Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation
نویسندگان
چکیده
Within the Kyoto Protocol, the clean development mechanism (CDM) is an instrument intended to reduce greenhouse gas emissions, while assisting developing countries in achieving sustainable development, with the multiple goals of poverty reduction, environmental benefits and cost-effective emission reductions. The CDM allows for a small percentage of emission reduction credits to come from afforestation and reforestation (CDM-AR) projects. We conducted a global analysis of land suitability for CDM-AR carbon ‘sink’ projects and identified large amounts of land (749 Mha) as biophysically suitable and meeting the CDM-AR eligibility criteria. Forty-six percent of all the suitable areas globally were found in South America and 27% in Sub-Saharan Africa. In Asia, despite the larger land mass, relatively less land was available. In South America and Sub-Saharan Africa the majority of the suitable land was shrubland/grassland or savanna. In Asia the majority of the land was low-intensity agriculture. The sociologic and ecological analyses showed that large amounts of suitable land exhibited relatively low population densities. Many of the most marginal areas were eliminated due to high aridity, which resulted in a generally Gaussian distribution of land productivity classes. If the cap on CDM-AR were raised to compensate for a substantially greater offset of carbon emission through sink projects, this study suggests that it will be increasingly important to consider implications on local to regional food security and local community livelihoods. # 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Investigating afforestation and bioenergy CCS as climate change mitigation strategies
The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and s...
متن کاملDetermination of suitable areas for reforestation and afforestation with indigenous species
To be successful in tree establishment, an assessment of land suitability would be necessary. The aim of this study was determining the potential habitats of three native tree species (Quercus persica, Pistacia atlantica, Amygdalous scoparia) in Siahkoh region of Ilam County, using Boolean method and Geographic Information Systems (GIS). For this regard, the slope, aspect and hypsometric maps o...
متن کاملTransition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document
Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...
متن کاملReducing Emissions from Deforestaton and Forest Degradation (REDD+) – What is Behind the Idea and What is the Role of UN-REDD and Forest Carbon Partnership Facility (FCPF)?
Background and purpose: Although greenhouse gases related with the Land Use, Land Use Changes and the Forestry (LULUCF) represent approximately 15-20% of all greenhouse gases emissions to the atmosphere, afforestation/reforestation projects of Kyoto protocol related Clean Development Mechanism (CDM) represents only 0.75% of all CDM projects. All these facts prompted re-negotiation of climate ch...
متن کامل